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Abstract— A powerful technique for optimizing an evolving complete control over the behavior of the players. That is
system “agent” is co-evolution, in which one evolves the agent's glways true if there are communication restrictions thavent
environment at the same time that one evolves the agent. Here us from having full and continual access to all of the players

we consider such co-evolution when there is more than one Itis al I t if f the pl h Such
agent, and the agents interact with one another. By definition, IS also always true I some of the players are humans. suc

the environment of such a set of agents defines a non-coopesai limitations onour control are also typical when the playames
game they are playing. So in this setting co-evolution means using software programs written by third party vendors.
a “manager” to adaptively change the game the agents play, On the other hand, even when we cannot completely control
in such a way that their resultant behavior optimizes a utility o players, often we can sgtmodify some aspects of the
function of the manager. We introduce a fixed-point technique .
for doing this, and illustrate it on computer experiments. game among the players. As examples, we .mlght. hayg a
manager external to the players who can modify their utility
|. INTRODUCTION functions (e.g., by providing them with incentives), therco
Many distributed systems involve multiple goal-seekingiunication sequence among them, what they communicate
agents. Often the interactions of those agents can be nibdeldth one another, the command structure relating them, how
as a noncooperative game where the agents are identified whthir chosen moves are mapped into the physical world, how
the players of the game and their goals are identified wifi at all) their sensory inputs are distorted, or even how
the associated utility functions of the players [7], [8]2]1 rational they are. The ultimate goal of the manager is to make
[17], [21]. Examples involving purely artificial playersalude such modifications that induce behavior of the players that i
distributed adaptive control, distributed reinforcemésdrn- optimal as far as the manager is concerned.
ing (e.g., such systems involving multiple autonomous adap As an example, say some of the players are evolvable soft-
tive rovers on Mars or multiple adaptive telecommunicatiorware systems. Then the game details comprise the envirdnmen
routers), and more generally multi-agent systems invglvinn which those systems evolve. So modifying the game details
adaptive agents [2], [6], [15], [16]. In other examples som® optimize the resultant behavior of the players is a varian
of the agenty players are human beings. Examples includef using co-evolution for optimization [1], [3]. The ftkrence
air-traffic management [9], multi-disciplinary optimization [4],with most work on co-evolution is that in optimal management
[5], and sense, much of mechanism design, including of a game we are concerned with the environment of multiple
particular design of auctions [8], [12], [13]. interacting and evolving systems rather than the enviraime
Sometimes the goals of the players do not conflict; if a solitary evolving system.
tuitively, the system is “modularized”. However often this In the next section we present a simple example that illus-
cannot be guaranteed. As an example, it may be that in mustes how the behavior of players in a game can be improved
conditions the system is modularized, but that some camditi by changing the game, discuss previous related work, and
cause conflicts among the needs of the players for system-waverview our approach. After that we present our notation.
resources (e.g., when an “emergency” occurs). AlternigtiveWe then use that notation to introduce a formal framework for
it may be that the players take physical actions and thatrundmalyzing optimal management. Next we use our framework
some conditions the laws of physics couple those actionstmintroduce an algorithm for optimal management. Aftett tha
way that makes their goals conflict. Moreover, whenever some present a computer-based test validating that algorithm
agents are humans, in almost all conditions there will beesom
degree of conflict among their goals. Finally, note that even
when there are no conflicts among the goals of the players,To illustrate how changing the details of a game may result
there may be synergies among the players that they can imothe players behaving in a way that is better for an external
readily find if left on their own. manager, say we have two playerRgwandCol, each of who
In all of these scenarios there is a need to intervene hias four possible moves (also called “pure strategies”). As
the behavior of the players. However often we do not hawssual, each player has a utility function that maps the joint
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pure strategy of the two players into the reals. Say thatethgsart of any player. Finally, the players not Thare modeled
utility functions, @R, g©), are given by the following bimatrix: as players, rather than treated as noise.
Our approach starts by specifying a parameterized set of
((_Oi% Eg 8 ((_2%’35)) E‘; ji models for the_ probability distribution of the entire synteTo '
(_2’ 1) (3: 2) (00) (5 ’_1) (1) capture our prior knowledge that the players are goa_l-agekl
a ’1) (6,0) (l,—2) (6’ ~1) these models are based on game theory considerations. There
’ ’ ’ are two types of parameters of our models: those that charac-
To play the game each playere {Row, Col independently terize the behavior of the players, and those that the manage
chooses a “mixed strategy”, i.e., a probability distribati sets. The former are estimated from observations of system
Pi(x;) over her set of (four) allowed moves. So the expectdgbhavior. The manager then uses those estimates and searche
utility for player i is Ep(g) = 2w Pi6)P-i(x5)u(x, x-i), over the remaining parameters, to find which of the assatiate
whereP_j(x_j) is the mixed strategy afs opponent. probability distributions are optimal for him. He then seisse

A pair of mixed strategiesRrow Pcol) is @ “Nash Equi- parameters to their optimizing values.
librium” (NE) of the game if for all players, Ep(g') cannot
increase ifP; changes whileP_; stays the same. At a NE,
neither player can benefit by changing her mixed strategy,Given any space&, we write the set of functions frord
given her opponents’ mixed strategies. To illustrate, a NE mto Z asZ%. We use a minus sign before a set of subscripts
the game in Table 1 is the joint pure strategy where Rowf a vector to indicate all components of the vector othentha
plays her bottom-most move, and Col plays her left-motie indicated one(s). We will use the integral symbol wita th
move. Noncooperative game theory’s starting premise is thmeasure implicit. So for example for fini¥¢ “fdx" implicitly
“rational” players will have a NE joint mixed strategy. uses a point-mass measure and therefore means a sum. We

Now say that we could induce both players to be “antinrite |Z| to indicate the cardinality oZ.
rational”, that is to try taninimizetheir expected utilities. (For-  We use upper cases to indicate a random variable, and lower
mally, this is equivalent to multiplying their utility futions cases to indicate a value of that variable. So for example
by -1.) Now the equilibrium of the game occurs where RoWP(A | b)” means the full function mapping any value
plays the top-most row and Col plays the right-most columof the random variabléA to the conditional probability of
Note that both players have a higher utility at this equilibor a given the valueb of the random variableB. We will
than at the NE (4> 1). Moreover, neither player would be loose in distinguishing between probability distribong
benefit if she changed from being anti-rational to beingratl and probability density functions, using the term “proltigibi
and the equilibrium changing accordingly, regardless attvh distribution” and the symboP to mean both concepts, with
rationality her opponent adopted. Accordingly, conside t the context making the precise meaning clear if only one@f th
scenario where the manager’'s goal is to increase the utildggncepts is meant. We will also use the Dirac delta symbol
functions of both players. Then if he can infer that jointianteven if its arguments are integers or even symbols. So for
rationality does that, and can also induce the players mthexample the expressiaf{a — b) wherea andb are members
be anti-rational, the manager would benefit. of an arbitrary finite space equals laf= b, 0 otherwise.

More generally, the optimal management problem is how We write N to mean the infinite set of all integers not
to find changes that the manager can make to the system thas than 1, and4 = 1,...,N. We will sometimes use
would make it behave in a way that the manager prefeurly brackets to indicate a set of indexed elements without
In the Probability Collectives [14], [19], [20] approach toexplicitly specifying the range of the indices. For example
optimal management, one has complete freedom to design ithexn N-player game where each playehas an associated
players in some subsét of all the players. The remaining variablea;, “{a;}" is shorthand for{g; : i € .47}. Similarly a_;
players are treated as exogenous noise, with no attemptigshorthand folg : i € .4/,i # j}. sgn(X) is defined to equal
exploit prior knowledge that they are goal-seeking. Disttéd the sign of the real valug, with sgn(0) = 0.
reinforcement learning and related approaches share thesé/hen defining a function, the symbol=* means the
characteristics [2], [6], [15], [16]. In the Collective kitigence definition holds for all values of the listed arguments. So
approach [21], [22] one only has freedom to design the wtilifor example, ‘f(a, b) = fdc r(@)s(b, c)” means the definition
functions of the players iit, and again treats all other playersholds for all values o& andb (as opposed to being an equation
as exogenous noise. Most of mechanism design [8], [12hose solution specifiesd and b). Abusing notation, given a
[13] shares these characteristics (though in mechanisigrdesfunctionF : A — B, we will sometimes writd=(A) to indicate
one talks of “conditional payments” to players rather thathe range of, but sometimes writé(A") to indicate the full
“modifications to their utility functions”). function F evaluated over domaiA’.

In contrast, here we focus on a more general situation. WeThe unit simplex of possible distributions over a spdcds
expect that manager may only have partial ability to modifyritten Az. Given two spaces, B, we write Ay g to mean the
the players inT, and that those modifications may involveunit simplex over the Cartesian produetX B. Similarly, Aap
other characteristics besides their utility functions. Weso indicates the set of all distributions éfconditioned orb, and
allow the manager to change system parameters not directlyg indicates the set of all functions frol into A, i.e, the
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set of all conditional distribution®(A | b), b € B. Finally, So our players are single-step receding horizon contsoller

given a Cartesian product spa¥e= ; X;, we write A, to (An example of an alternative is where each player wants
indicate the Cartesian produlX; Ax,. SoA, is the set of all to maximize the expectation of a discounted sum of future
product distributions oveK. Similarly, A,a is X Ax | & the rewards.) Expanding, we write that expected utility as

set of all product distributions ovet conditioned ora. ) .
Blg©u)] = [ dha Pa)g00)
IV. TRAJECTORIES THROUGH THE SPACE OF GAMES
A. Exact State Information = f do, [ f dBr ABeer, b Ut)gi(9t+l)] P(6,).

Say we have a repeated game, with the set of possible
system states (states of Nature) given @yand the set of
possible joint moves by the players given By [8], [12]. Now plug in the definition ofA to get

For simplicity, say this is a stationary game of completeesta_ . iroi
information [12]. So we can dispense with a special space &9 (@t:1)] f dér P(6r) [ f A1 H o1 (X1, 00) %
possible signals to the players — at every iteration eveayey !
know; the current state of Nature exactly. In fact, we restri f 401 7O, O X1)G (Gst) |
attention to behavior strategies by the players that onbedd
on that preceding state of Nature; every player's behaVviora fdg P(6) fd iy [ .

X » L : % o » 00y (X415 6
strategy is a conditional distribution over the possiblevaso 0 P(6) +1 lT[ 1 (%10 07 (X5 6)
of that player conditioned on the preceding state of Nature. (6)

Also for simplicity, we take® and X finite. . , :
We write the (fixed) conditional probability of the next stat Where for alli, ¥'(x.1; 6) = E(gy, | X1, 64)-

(®)
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given the current state and the next joint move as This shows that each value @ specifies a separate
conventional strategic form game for the players, with rthei
(041, 0t Xes1) = P(Orea | 6, Xee1) (2)  g-specific mixed strategies ove&.1 given by {o} = P(XI,, |

6) : i € 4} and theiré;-specific “dfective” utility functions
over Xi,1 given by {y'(X},;;6) : i € .4)}. The actual timet
is irrelevant to the specification of the game; only the value

wheret € N, 6;,1,6; € ® and x,;1 € X. The joint behavioral
strategy of the players at tinteis the distribution

P(xu116) = 1_[ P(x{+1 | 6) of the parameteé, matters, by setting the dependence of the
[ effective utility functions onXy,;. We write this game jointly
L na‘t(x{ﬂ, 6;). (3) specified byé, = and the seg = ¢'} as thegame function
i

B™9(6), or sometimes jusB(4;) for short. (So for every,
(Note that it is a matter of conventional whether we have tH¥6) is @ set ofN utility functions, {y'(X; 6)}.) _
index onx bet or t + 1: we choose it to bé+ 1 so that the  Accordingly, consider the following iterated process sEir
behavioral strategy of the players is formulated as the rifuve @t imet we sampleP(@:) to get ad:. Next, the players set
players will make given the system state they just obseyvedt(Xt:1 | 6) to a NE of the gan?eB(et). Each player t?en
Intuitively, each componenk of x is set independently Samples her mixed strategy, (X, , | &) to get a movex, ,.
of the other components by playérin a completely free This specifies a joint move,;. After this 7(@1, 6, X11) is
manner. It is in how those moveffect the next state of NatureS@mpled to get a nex® value, 6.1, and the process repeats.
that “constraints” can arise that physically couple theices ~ NOW in general, there may be more than one NE for some
controlled by the players. In general, we place no restricti 9@meB(6). More broadly, if the players are allowed to have
on the form of eactP(X, , | ©); they are to be set solely by bounded rationality, the set of possible joint mixed syas
associated game-theoretic considerations. adopted by the players for any garBg)) may have non-zero
Given this, the updating rule for the distribution overis Mmeasure. However say we haveriversal refinementwhich
the players jointly use to always pick the same unique joint
P(f.1) = fdgtdxpr1 (01, O, Xes1) ngit(xiﬂ,gt)p(gt) (4) distribution for any game, i.e., a mappify B(®) — A,. (As
i an example, it might that for ang, R(B(#)) is a NE of game
This is the transition equation for a Markov proces8(6)-) Thena (X1, 6) = R(B(6)-* This means that for fixed
taking P(©) to P(Ou1), where the transiton matrix 7 andg, oy is at-independent function fror® to A, (changes
dem (@1, O, Xi1) [T (X, ,, ©) is parameterized by to t that don't6; don’_t changeB(6;) and therefore d_on’t change
the behavioral strategies of the players. Write this matsix g1(Xt:1,6).) Accordingly we can drop the subscripirom or.
A(B,1, O, 0y), or A(o) for short, whereo is the vector of R induces attindependent) conditional distribution
all players’ behavioral strategies at timeSimilarly write the bR A f
. P>™(6 6) = d Oi+1, 6, % R(b)]( % 7
update equatlon Eq 4 ﬂ@t-{-l) — A(O’t)P(@t) ( t+1| t) X+l ﬂ( t+1, Ut t+1) [ ( )]( t+l) ( )
For simplicity, we restrict attention to scenarios where at | _ - L _ _ _
Such “point prediction” specifying a single possiblefor a givenn

any momentt, the goall Pf, each playerris to maximize an andg, is the goal of conventional game theory. More sophisticatedeling
expected associated utility : ® — R evaluated at timé+ 1. provides a distribution over’s. See [18].



whereb € B(®). (Note thatPPR is well-defined even ib # full-rationality equilibrium at timet is any set of strategies
B(4:).) If we sample this conditional distribution for a currenth!} such that simultaneously eabhmaximizes the expected
pair (b, b = B(6;)) we (stochastically) generate a n@walue, (effective) utility, E(ri(®; W;)), as evaluated usinig’.
0:+1. EvaluatingB(6,1) then produces a new ganbeand we subject to the strategies of the other players.
can then apply Eq. 7 using that new game, so that the procesRecall that when every player has exact knowledge of the
repeats. In this way, for any fixed andr, the functionB(®) current state, the players are involved if.andexed strategic
generates a distribution over possible sequencesof form game, by Eq. 6. So comparing Eqg. 6 with Eg. 10, it might
An interesting special case is whd® is invertible, i.e., seem that in the partial state information case the players a
where knowing theN function {y'(X..1; 6;)} uniquely fixess;. involved in “a wi-indexed strategic form game”. This is not
In such cases we can dispense v@tithe stochastic dynamics strictly correct though. The problem with the comparison is
of the system acros8 reduces to a stochastic dynamics acroshat whereas eadtj only depends om', the efective utility r}
an associated space of gamBg®).2 depends on the entire vectar there is no such distinction in
the arguments of the corresponding functions in Eq. 6. Here
playeri can only usew to choose her move, whereas her
Now say that each playenot seed; at iterationt, but only a ytility function depends on the fuil.

“signal” w; that is stochastically related t. So the updating  More carefully, what Eq. 10 really shows is that at each time
rule for the distribution ove® is now t the players are involved in a correlated equilibrium gdme.
POLy) = 610 (6. 6 ) x Moreover, since each conditional distributiéli is fixed in

trl 10%+ 10V 701, Ot X1 time, the distributionP(W;), along with each fective utility
o o function r{, all vary with P(®).> So the correlated game the
[n[h't(xhrwt)ﬂ' (W, 6:)| P(6:) (8) players are engaged in varies witfin general, and therefore
i so does the full rationality equilibriurh;.
where hit(xim,wit) 2 P(xi[+1 | Wit) replaceso” as the strategy ~ To understand this intuitively, note th&(®;) changes as
adopted by playeri at time t, and whereP(w | 6) £ the system evolves, just @schanges in the exact information
[Tie.y Q'(W, 6) is the (fixed) conditional distribution speci-case. (See Eq. 8.) Moreover, in this partial informatiortirsgt
fying how the vector of all the signals of all playens, is P(©)) is a “prior probability” that each playeiruses to infer
stochastically generated from a current state of naire ~ Whaté, is likely to be, having observed signa]. Accordingly,
Now by Bayes’ rule, we can always expand changes td?(®;) changes the optimal behavior stratetji\és
Just asf; defines the game of Eq. 6, (0;) defines the
PwWe)P(6 | wh) game of Eqg. 10. In both cases, the game the players are

B. Partial state information

P(6:)P(w, | 6;)

= P(6) 1_[ Q'(w, 6) (9) engaged in changes in time. In the partial information case,
et the system evolves from ortgo the next by going through a
Plugging this into Eq. 8, sequence of correlated equilibria. For everyhe equilibrium
. o , of the associated game specifies a new game whose correlated
E[g'(®u1)] = fdw[ P(wt)fdxm l_[ht'(xt'ﬂ,w{) X equilibrium gives the timé+1 joint move,x.1. The associated
i

transition rule is non-Markovian, i.e., since the optinigl
i depends orP(®;) which changes in time, the transition rule
[ f A6, 61 P(O: | W)m(Br1, 6, Xr1)G (Bre1) | Eqg. 8 is not a Markovian process ov¥ix ©. In particular,
- o the dynamics ove® is not governed by the matri&.
detP(Wt)dem l_lhtj()(tj+1’wt])r{(xt+l;wt) For this partial information case, the game function has
i P(©y) as its argument rather th@p(the argument of the game
(10)function in the exact information case), and is paramegdriz

where the value of the vecter at timet is w; and where each Py € in addition to = and g. Similarly, the domain of
Fi(Xes1; W) is an “efective” utility function for playeri. The any universal refinement for the partial information case is

>

20ne example of an invertiblB is presented in the experiments below in ~ “One can see this by considering a two-stage extensive fome gmsed
which the two players have filerent utility functions and there is no manager0n our original strategic form game. In that two-stage gameetieea single
so the thruster angles are fixed. As a more extreme exampl@ Heta subset first-moving Nature player who sets; by playing the (potentially time-
of RN, and define eacly’ as the associated projection operatg(g) = ¢'.  varying) distributionP(W). The original players#" simultaneously move
Presume further that for alk,1 € X.6; € 0,61 € O, n(6s1,6;, X51) = N the second stage, and each such pldyer.#” has an information set
5(#(6, Xes1) — 6r41) for some vectgor-valued functiop. So for alli, 6, and  consisting of the valuey;. The utility function of thei'th player in the
Xe+1, ¥ (Xeet; 0) = & (6, Xe+1). Now ¢ takesX x©® — ©, i.e., X acts on® via two-stage game is the associatefiieetive utility function of playeri in
¢. Say that eachk' € X' is a diferent permutation 0®'. Then not only is the original gamey;. Now if h(Xe+1, W/) is a full rationality equilibrium
B(®y) invertible, but in fact we only need to know ti values{y'(x.1;6;)} of the original game, then there is no playieand functiony such that

for one x.+1 to know 6. Jdwdxin PW)he e, WO @K, ), X3 W) - > E[g'(@r)] So thathy
3There are many variations of this scenario. For example, wieldmve s a correlated equilibrium of the two-stage game.
each playei base her probability of move' at some timet on a history of SIntegrate both sides of Eq. 9 ovérto see thaP(W;) depends orP(0y).

valuesw, for t’ <t in addition tow;. Many such variations can be mappedThen use Eq. 9 again to see tiB; | W) depends orP(@;), and therefore
into one another by redefining what the variables mean. so does each.



an expanded version of the domain for exact informatidhat is stable under the Markovian dynamics. (This stabilit
univeral refinements, now being the set of all correlatéd the Markovian dynamics is flerent from the stability of
equilibrium games. Given such a partial information game peaked fixed point; the first concerng, and the second

function B~¢ and refinemenR, we can writeh(x.,1,Ww;) = concern®.) He might also prefer that the dynamics converges

R[B™%9(P(6,))](%+1, W). Plugging this into Eq. 8 then givesto the fixed point quickly from some initial distributid(®y).

the dynamics ove®: Given any such preferences, the simplest version of the
_ manager’s optimization problem is to find tlyee Y such

PTOR(g ) = f A6 A 10w 71(Bs1, 6t %1 1)Q2We, 6) X that the associated Markov transition matd¥ has a fixed

R point, and to optimize the location of that fixed point, its
[R[B’g’ (P(®t))](Xt+1,Wt)] P() (11) stability, and how quickly it is achieved. There are more
N ifoni sophisticated policies the manager might adopt however. Fo
whereQ(wt, &) = [T (W, &). example, it may be that by judiciously “mode-switching”
V. OPTIMAL M ANAGEMENT among the possiblg as the system evolves, the manager can
induce the dynamics to go from the initiB{®g) to a desired
fixed point P(®,) more expeditiously than it would if any
From now on, for simplicity we restrict attention to the casgingley € Y were used for the entire sequence.
where the players have exact state information, as in Sec. IV Note that despite having a preference ordering and a move to
A. This means that we do not consider thiéeets of sensor choose, the manager is not a player in the game. In partjcular
noise on player behavior. there is no dynamics of. Rather the manager seysfrom
Say we have ananager external to the players who atoutside of the system.
eacht has a preference order over sequences of futgreSo
the manager prefers's, Rs, andg's that are more likely to B. Algorithm overview
produce desirable sequencesdsf, as determined by EQ. 7:  For simplicity, from now on we restrict attention to the
case where the preference order of the manager does not
P ORGuL1 | 6) = fdxm (01, 0, Xer1) [R(B™9(6)))(%+1)  depend on the full future sequence through the space of
(12) games, involving fixed points, discounted sums of rewards,
or something similar. Rather, like the players, at evetie
(For the partial information case, dynamics o@lis instead manager is only interested in optimizing (the expectatifn o
given by the non-Markovian Eq. 11.) an associated utility function @, ,. This restriction means we
Suppose that the manager can change some aspectsloohot need to explicitly considet-indexed &ective utility
m andor g andor R. Then at eacht the manager has anfunctions, game functions, or the like. We write the manager
optimization problem, of how to choose among its set oféspl utilty function asG: ® — R.
y = (r,0,R) to optimize the likely resultant sequencesé. In practice, the manager may not know all relevant attribute
Note that since we are in the exact information case, we do it the players an@r the rest of the system. In this case
allow the manager to distort the sensor inputs to the playetlse manager must estimate those attributes at run-timeeSin
(That would mean distorting.) Similarly, it means we do not the underlying process is Markovian, this means taht the
consider the possibility of the manager modifying the intemanager’s problem is one of controlling a partially obsbtea
player communication structure gond command structure Markov decision process. However since here at evete
(i.e., we do not allow the manager to change the extensiwenager is only concerned with,; (rather than the whole
game the players are engaged in). future sequence af's), we adopt a simpler approach.
As an example of this, the manager’s preference order mightTo begin, parameterize the triple, g, R} that fixes Eq. 12
be be a discounted sum of future rewards. This need not e (£,y). As before,y is the set of all parameterdfacting
the case however. To illustrate this, note from Eqg. 12 that fthe behavior of the players and the system that the man-
any fixedy the transition matrixdy = P(®,1 | ©;) is fixed ager can set{ is a set of other parameters outside of the
for all time. So for any fixedy, we have a Markov processmanager’s control thatfiiect the behavior of the players and
acrossP(@) € Ag with transition matrix&¥ and can analyze its system, but can be estimated from observational data. These
convergence properties. In particular, the manager migtiep may include in particular parameters that characterize the
a sequence il that eventually converges to a fixed pointendogenous behavior of the players. For examplenight
(Note this is a fixed point il\g, not in ®.) Furthermore, if by specify the rationality of some playér(suitably quantified),
settingy he can vary among a set of such fixed po{fi@®.,) € or if the manager cannot modify, ¢ could specifyg'. Other
A}, then his preference ordering might lead him to prefer oneesmponents o might afect multiple players at once, by
that are centered about certain location®inHe might also modifying R, 7= andor the parametric dependence @bn y.
prefer aP(@,,) that is stable, in that it is highly peaked, so thafo formalize this we sometimes wrig”¥, R, andor n¢V.
in the infinite time limit P(®;) settles to a distribution under Any pair (£,y) specifies the dynamics ové¥, via Eq. 12.
which) 6; has little variability. In addition to these aspects 060 presuming the manager's estimate ©fis correct,
the fixed pointP(®.,), the manager might prefer a fixed poinsince ¢ is independent ofy, the manager can determine

A. General considerations of optimal management



how varying y translates into variations ios¥(Xe1,6;) 2 Note that the QRE mixed strategy for playiedepends on

REY[BY(6)] (%41, 6;). So the task for the manager is to findhe mixed strategies of the other players, thro@(gtyjl |

they that maximizes xhl, 6:;). So the QRE is a set of coupled simultaneous equa-
tions. Brouwer’s fixed point theorem guarantees that there
EY(G(6i41) | 6) = is always at least one- that solves this set of equations.

o Moreover, in the limit of 8 — oo, the QRE ¢ places
f d6r;1d%:1 G(Br1)m (Brs1. 01, Xee1) 1_[ 7" (%,1.6) (13) zero probability mass on any move that doesn’t maxiniize
et expected utility. Accordingly, ag' — o for every playeri,
Often the manager will not be able to find this optinyal the QRE approaches a NE [10].
This may be due to ignorance of some of the distributions, For eachi, the associated QRE equations can be expanded
computational limitations, inability to estimate someeseint as the|X'| + 1 equations

components ofg;, etc. More generally, it may be that the o PG, 60) .

players are actually in a partial state information scendmit o' (X156 — — =0 vx,,  (16)

the manager cannot solve for tigethat optimizesEéY(Gy,1 | N'(6)

W) (e.g., due to ignorance @, or of w). NI () - fd)¢+1 FPELKLM = 0 (17)
In such situations we approximate how the joint behavorial

strategy and system dynamics dependsyaand / with an where for alli,

equilibrium model. This is a pair of counterfactual game and ‘

(perhaps bounded rational) refinement functiddfe, and R&. BV (g, I K, ..6) =

Our presumption is that if we change the integrand in Eq. 13 t S _ _ o

involve those functions, the resultant dependend&#(G. 1 | fd9t+1d><t‘+'l ' (B )7 (Bran, 01 Xy 10 Xeig) l—[ ol(x,,.6) (18)
6;) on (£,y) accurately approximates the true dependence. j#

In practice, the manager might also estimat¢’ (X.1,6:) By plugging Eq. 18 into Eq.s 16, 17 and running over all
for the currentg; from observations. Doing that allows thepjayersi, we specify the QRE as a set Bf = N + Y., |X|
manager to avoid evaluating¥[B-¥(6,)], which typically coupled simultaneous equations. For fixidthere are a total
would require solving a coupled set of equations. Intuljive of M unknowns in those equations: tNenormalization factors
Nature solves the equations on behalf of the manfgethis {N'} together with theX;. , |X'| mixed strategy components of
situation, the manager only has to solve for how the solutigpe players{c'(x,,6,)}. We can condense thod¢ equations

RY[B“¥(6) would change ify were to change (for the givenin M unknowns into the following equation:
.. As illustrated below, this may reduce to the manager’s

estimating how the integrand in Eq. 13 varies wjthfor the f(o-N.y) =0 (19)

given{. From now on we suppress tigesuperscript. whereo is the vector ofyc 4 |X'| probabilities{c'(xX, . ) :
C. Quantal Response Equilibria i e 4, ]e|X}, Nis the vector oN normalization factord) is
the M-dimensional vector of all 0's, anflis anM-dimensional

We are interested in modeling players that are “bound?/gctor-valued function. For any the solution to Eq. 19 fos-

Latlonal ' |.e.,b|vv ho ;vant t(;\ maxwlnlze tr:je|lr fexpre1_(:te(_zl UBEL o ndN gives uso®¥ and the associated valugs'}, respectively.
utare not able to do so. A popular model for this situation Is g simplicity, we model the player interaction as being a

the QuantaI.Response Equilibrigr_n (QRE) [10], [11_']' Qndg trbRE for some suitable set @'s. (Exploring more sophis-
QRE, the mixed strategy of play®is a Boltzmann distribution ticated models is the subject of future work.) The set of the

over her move-conditioned expected utilities: Bs of all the players will comprise in our experiments. In
o . SE@11%, 1.0 addition, everyg” will be independent of; only n¥ depends
o (X100 = NG (14)  ony. The resultant dependence of the player mixed strategies
o . o ony is captured in Eq. 19.
whereN' is the associated normalization constant, ) ) )
_ D. Moving the QRE fixed point
. . . imY (oY [y X . . .
N'(6r) = fdxhl & PGk, (15 The managers expected utility is given by Eq. 13 where
eacho®™! is given by Eq. 19. For a giver, the task of the

If at eacht the objectives of the players involve futuréynanager is to move so that the resultant solving Eq. 19
trajectories througt® rather than just (as in this papet).s, optimizesEY(G(6k.1) | 6) as given by Eq. 13. In more detalil,

then th_e exponents in the QRE equations should be chqn he manager changgshe changes the values in Eq. 18,
acco_rdmgly. Those e>-<ponents_ Sho“"?‘ also be changed if Weich then changes the probabilities in Eq. 14. That in turn
are in a partial state information setting rather than amex%hanges expected, according to Eq. 13. The manager wants
. . . . y,' H 1 . .
st.ate information .settlngy’i(by {ep'a.c'”g, BN G, | %1 60, to search ovey's to maximize this ensuing value of expected
given by Eq. 6, withE”(g;,, | X1, W), given by Eq. 10). G. The manager can do this using a gradient descent over
expectedG based on the following equation:
6Sometimes the manager can even soliéit’ (.1, 6;) from the players.



to (61, 6;, %11), Whered, represents the current state of the
P o satellite in theR2, and x.,1 is the two thrust vectors that are
f dOi110%41 G(Ots1) — [7Y(Otr1, Ot Xes1)] 1—[ 5Y'(x,1,6:) chosen by the two controllers to fire at the next time step.
oy i€ The eight possible thrust vectors are assigned an initial se
+ of angles. Figure 1 illustrates the satellite with the ttets
f 01 10% .1 Gl ) (Bn, 61, Xion) 9 [1—[ G 9’[)} Each controller has its individual goal point where it wishe
oy b +1 to move the satellite to. The manager has its own objective
(20) for moving the satellite.

FE(GOu1) 16) =

The first integral is what the manager’s estimate of the gratdi
of expectedG would be if the manager were a “conventional t ‘ ‘ ‘ ‘ 5 Controller 15 ‘
controller”, who presumes that¥'(x, ;, 6;) is some stationary 075} possible thrust vectors
distribution. The second integral is the correction terrnon

duced if the manager accounts for the fact that the algosthm

Controller 2's
possible thrust vectors

setting eachy are actually adaptive players who (under the 0-25¢ \ »
QRE model of their mutual adaptation) obey Eq. 19. of -0 -
To compute the integrand terms in Eq. 20 involving partial 025 // \

derivatives of theo*Y"’s, expand both sides of Eg. 19 that
equation to first order ity (i.e., use implicit diferentiation): 05y

254y -0.75

e i 1) R R

¥ 9ty N ay T o 05 02 0 0% 05 075 1
(Note that in generay is a vector, so for examplél, %=

y Fig. 1. Satellite Control Example

and %—N are all matrices.) The solution to this equation gives

us the partial derivatives we need to evaluate Eq. 20. ) )
Given these partial derivatives, we employ conjugate gra-CGiven that the two controllers are allowed to fire one thuste

dient descent to update An alternative is to use Newton's each simultaneously, we implement the evolution of thelsate

method; to do that one needs to compute the Hessian of ti{@S trajectory as a repeated game. For this experiment,
QRE probabilities with respect tg, which can be done by we realized the two controllers as Boltzmann reinforcement

differentiating the solution fo?‘ai given by solving Eq. 21. learners. Each of the four moves of both the controllers is
Note that in practice, when running this algorithm we cattached a utility value. As the system trajectory evolves,
ask the players (or observe their behavior) to determinie thihe controllers update the utilities associated with eacvem
joint mixed strategy for the current 6¢Y. So we don’t have based on how close the moves get them to their individual
to solve the fixed point equation giving the QRE. Our desce#ipals. At every time step, the controllers associate Baitzm
algorithms only require that can predict the dependencéen Probabilities to the moves based on the utilities assatiatth
position of the QRE ory. That means we only need to knowfh0Se moves. Thus, moves with higher utilities are given a
how 7 and the player utilities depend gn higher probability, and moves with lower utilities are give
a lower probability. To guarantee exploration of all moves

E. Experimental details including those with low utilities, the probabilities of eh
DHW: Note that in our experiments, we actually have a individual moves have a set lower limit. If the equilibrium

partial information scenario, where w, is player i’s history probabilities specified by the Boltzmann distribution fzglow

of moves and rewards. However we can't write down this limit, they are reset to this minimum threshold, and the

Q tractably, and therefore instead approximate it and probabilities of the remaining moves renormalized to sum to

its ramifications, with an exact information equilibrium
model. It is that model that we then manage.

unity. This guarantees exploration of the move space along
with exploitation. The reinforcement learners also usea-dat

Also, somewhere we must say how in our experiments, aging techniques to give more weight to the recent data sersu

we assume that whateveR is for the QRE that (approxi-

old data. In these experiments, we used exponential waighti

mates) our adaptive controllers, it is a smooth function of to update the utility values associated with each move. ;Thus
Y. the utility value for a particular move is given by a weighted
To illustrate the various concepts outlined, we considersam of the past utilities that the controller observes fat th

simple problem of controlling a satellite iR%. The satellite move. The exponents of the weighting term are a function of
has two controllers (players) that each fire a thruster fromsgate and time. So an observed utility value that is based on
set of four thrusters assigned to each of them. The resultéme system state that is closer to the current state, andengt v
displacement of the satellite is given by the vector addittd far back in time is given more weighting than a utility for the
the two thrusts from the two thrusters fired by the contrsllermove that was taken at a state further away from the current
In these experiments, the dynamics of the satellite cooredp state and farther back in time.



The manager, observing the behavior of the two controllepssition (2,2). Figures 2 and 3 illustrate théeet of the
and the evolution of the system states, needs to deduce nienager, where the manager's goal is also set up to be at
model of the controllers’ interaction. For the current akpe (2,2). Without the manager, the trajectory takes a very long
ment, the manager allows the controllers to operate withdirne to move along thé; axis. With the manager active, the
updating the thruster angles. The manager then captures ttiveister angles are updated to move the satellite quickiigeo
middle section of the trajectory along with the associatetksired position.
moves of the two controllers. The manager then estimates the

rationality (3;) of the two controllers by optimizing the log- o honhcle Menagement  stant A enageen st
likelihood objective function that maximizes the equilibn , .o , . ﬁ,f’“
probabilities of a QRE model with the observed moves. The
manager, now, having a model of the interaction between : end 1 xw’f

the two controllers, updates the thruster angles. Thistepda ;| < %i )(,,3

is carried out every five simulation steps. So the learning

controllers operate for five simulation steps, at which poin ™ o

the manager updates the thruster angles. In these expésimen -

1 0 1 2 3 4 5 2 ) 1 X 3 2 5
we employed the Newton’s method to update the thruster e &

angles. Every update corresponds to multiple internal tgpda
steps, where the manager keeps on updating the angles timi;]
can no longer increase its objective function beyond a icerta

prechosen threshold value.

4. Comparison of the Trajectories without (Blue) andw(Red) Active
agement of the Interaction between the Learning Cortofor Case 2

350
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Fig. 2. Comparison of the Trajectories without (Blue) andhwRed) Active
Management of the Interaction between the Learning Coetofior Case 1 O Io0 20 30 00 oo sos 700 s 900 1000

time index

Fig. 5. Comparison of the Manager’'s Objective Function with(Blue)
and with (Red) Active Management of the Interactions betwéenLearning
18 —— Without Active Management
Controllers for Case 2

In the second case, the thruster angles are given to be
(0°,900,180r, 27C°) Thus, both controllers have full control-
lability to move the satellite in th&? space. However, now
controller 1's desired position is (2,2), controller 2'ssited
position is (2,-2), while the manager has &elient goal (0,0)
from these individual goals of the two controllers. Figures

‘ N S S SRS G SO S 4 and 5 again illustrate the trajectory of the satellite with
0 100 200 300 400 500 600 700 800 900 1000 . . . .
time index and without active management along with the corresponding
values of the manager’s objective function for this case. We
Fig. 3. Comparison of the Manager’'s Objective Function with(Blue)

and with (Red) Active Management of the Interactions betwtkenLearning nOte. that _m thh _the cases, the manager is successful in
Controllers for Case 1 achieving its objective.
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